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Abstract

The analytical model for the determination of contact temperature and wear on a working surface of friction brakes
is presented. It is assumed that one of the friction element is composed of a periodic two-layered composite and the
second element is a homogeneous half-space. In the frictional process, the wear coefficient is linearly dependent on the
contact temperature. The influences of composite parameters as well as a parameter characterizing the changing of
loading from zero to the nominal value on the distribution of contact temperature and wear during braking is con-

sidered. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The paper deals with the problem of contact tem-
perature and wear on a working surface of friction
brakes. It is assumed that one of the friction element is
composed of a periodic two-layered composite and the
second element is a homogeneous half-space. The com-
posite element is continuously sliding with friction on
the boundary plane of the half-space. The presented
problem can be applied to brakes constituted of two
sliding discs (like airplane brakes). In frictional process,
the wear coefficient is assumed to be linearly dependent
on the contact temperature.

In the papers [1,2] the surface temperature of the
friction brake elements is determined as a sum of the
surrounding temperature, volumes and mean contact
temperature. The mean temperature of nominal contact
area is given by solving of the one-dimensional bound-
ary-value problem of heat conduction for two bodies:
the layered composite half-space z > 0 — denoted by
index p and a homogeneous disc z< 0 — (denoted by
index d), see [2]. It was assumed that the materials of the
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bodies are homogeneous and isotropic. However, in
modern systems of braking, some composite materials
are used. Especially, structures composed of periodically
repeated different layers can be applied.

In this paper, the layered composite half-space is taken
into considerations. The approach based on the homog-
enized model with microlocal parameters for microperi-
odic two-layered composites [3,4] is applied to an analysis
of contact temperature and wear during braking.

The homogenized model constitutes an approximate
theory of periodically composite being useful in solving
several types of boundary conditions for periodically
stratified thermoelastic composites, in which thermal
and mechanical continuity conditions on interfaces are
satisfied.

The review of papers connected with microlocal
modeling of periodic composites is given in [5].

2. Formulation of the problem
The problem of the frictional heating during braking

is determined by solutions of the equations of nonsta-
tionary heat conduction
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Nomenclature

c* ratio, ¢* = ¢y/¢)

ci,c;  specific heats of the subsequent layers of
composite

erfc(-) =1 — erf(-), erf(-)-error function

f coefficient of friction

k thermal diffusivity

K* ratio, K* = K, /K,
K,,K, conductivities of the subsequent layers of

composite
m coefficient of wear
P load
2 dimensionless load, p*(¢t) = 1 — exp(—1)
o maximal load
T temperature
T* dimensionless contact temperature
t time
T dimensionless time, t = ¢/
. dimensionless time, t* = ¢/fy

N stopping time in the case of constant pressure
during braking

ts braking time

Im characteristic rise time of the loading

w initial kinetic energy per unit area

q rate of the frictional heating

|4 sliding speed
14 initial sliding speed

z axial coordinate

hy,hy thicknesses of layers being composite
components

h thickness of fundamental layer, 2 = h; + h,

n ratio, n = h /h
p1, P, densities of the subsequent layers of

composite
1 wear
Subscripts
d homogeneous friction element
p periodic two-layered friction element

FTi(z,¢) B l 0T;(z,1)

0<t<t,,
0z? ki ot {
z>0 fori=np, (1)
z<0 fori=d,
with the initial conditions
T;-(Z,O) :07 l:pad (2)
and the coupling conditions
T,(0%,0) =T4(07,0) = T(1), 0<t<t, (3)
0T, (z,1) 0Ty(z, 1)
_ K = K, =27 =qg(t
’ 0z z=0* i 0z z=0~ q( )7

0< <t (4)
as well as the regularity conditions
I, — 0, i=p,d forlz]| » o0, 014 (5)

The scheme of contacting bodies during braking is
shown in Fig. 1. It is supposed that at the time 7 =0
composite half-space is loaded by normal forces of in-
tensity p pressed down to the disc. There is a heat gen-
eration due to the friction on the working surface, which
leads to a heating of the friction couple. The intensity of
friction heat flux ¢(¢) in Eq. (4) is equal to the rate of
frictional heat generation [2]

q(t) = fp()V (1), 0<t<t. (6)

In particular case it can be assumed that the loading
monotone increases from zero at time ¢t=0 to the
nominal value p, according to the relation [6]:

Fig. 1. Contact scheme of the frictional composite strap and
homogeneous disc during braking.

p(t) = pop* (1),
P'(6) = 1 — exp(=t/tn). @)
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When braking a body on an horizontal plane and,
considering only inertia effects, the speed during braking
V' (¢) changes from the initial value ¥, at ¢ = 0 to zero at
the moment of stopping ¢ = ¢ as follows [6]:

Vi) = Vb (1),

. . 0 (8)
Vi(e) = 1= [t = twp"(t/t)] /1, 0<2<s,
where 0 = 2W /fpyV, denotes the time of braking in the
case of braking for very fast reaching of nominal value
of loading py (tn, = 0). In the case of ¢, # 0, for finding
of the time of stopping ¢, the condition V' (#) = 0 is ap-
plied and according to Eq. (8) it leads to the following
nonlinear equation:

ts— tmp*(£> = 0<ty <t 9)
tm ’
The half-space z > 0 is assumed to be composed of a
periodic two-layered composite, in which the funda-
mental layer (lamina) contains two different layers of
thicknesses 4, and #h,, respectively. Let h, h=h; + h
denote the thickness of the fundamental layer. The
perfect mechanical and thermal contact between the
layers being components of composite is assumed.
The effective coefficients of heat conductivity K, and
thermal diffusivity k, of the considered layered com-
posite obtained by using the homogenization proce-
dure with microlocal parameters [3] are the following

form [7]:
K K
Kp:K1(1+[J), kp:i>
nkK cp
_ K, K K
K:KJK], K=—14+ 22 (10)

nol-n’
(Ka,[)75) = ”(K17P17C1) + (1 - ﬂ)(KZ’Pz’CZ)v
[K] :K2 7K1,

where
— hl
n= e

It is assumed that the Archaid’s wear model on the
contact surface [8] is given by

10 = [ e, 0<i<t, (1)

where /(-) is the total normal displacement of the
working surface of the half-space, and the intensity of
frictional heat flux ¢ is determined by Egs. (6)—(8), as
well as the wear coefficient m(-) is linear function of the
contact temperature

m(t) = mo +m T(1). (12)

The wear coefficient m, characterizes the wear due to
contact load p and m; characterizes the wear caused by

contact temperature 7. The linear dependence (12) is
valid for small temperature gradients [9].

3. The temperature

The solution of the boundary value problem of heat
conduction (1)—(5) obtained by using the integral La-
place transform with respect of time ¢ can be written in
the form of convolution integrals [10]

T

Z(z,t):/lo/l*/o Pt = 10) /] V*(t — 1)1

X exp(—Cf/ro)dro,

i=pd, 0<1<1, (13)
where
A _ fooVo [kat?
0 — )
K, b4
t - 1
T:t_O’ Tm:E7 Tszﬁv
’ : (14)
P B Ay
l-i-k,;7 ¢ Ky kp7
I i=p,d.

i = 5 /—kitgv
Substituting functions p*(-) and V*(-) into the integral

given in (13) and calculating for ¢; = 0, the temperature
on the frictional surface is given in the form

T(t) = Ap AT (2), 0<t<t,, (15)
where
T*(t) = (2+Tm —%r)ﬁ— (1 +%‘L’m —r)
X 23T (VT) + T/ 20 (V27),
T=— (16)
as well as

F(r) = exp(—rz)/or exp(x?) dx

is the Dousons integral which can be expressed as fol-
lows [11]:

00 _ 2N\i
F(r)zzﬁ 0<1<3,

Qit ) =1-3-5- (2i+1),
Fo=Y EZDE g

= e
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For ty, = 0 (¢, = #°) from Eq. (15) the relation for the
contact temperature during braking with constant
pressure during braking [12] can be written as

2t t
T(t) =244 (1 — = — —  0<r<t,.
0 =240 3ts)\/;,

4. Wear

By substitution of (15) into Eq. (11) and using (12)
after some calculations we obtain the wear relation of
the frictional surface of the composite half-space

I(t) = mgly(t) + m{Ag AL (¢), 0<t<t, (17)

where

() =1— /24 1tw(t — T — p"(1")
+ 1,0 (27)/2,

Loy =1"(0) + 17 (6) + 17 (0),

2 1+ Tm) 2+ )tV — 2 (10+7Tm) 2z

1) =5(

+%r3\/%— (1 4+270)(2+ Tm)

X Tmr/ T B\/Eerf(\/?*) — 1t exp( — r*)}

%(1o+ oyt \/_m{%\/&erf(\/;*)
- \/F<§+r*> exp(— T*)}
4,

3" 4 2

x exp(—r*)} +%(2+Trn)‘f'2.n Tm B@erf(@)
— VT exp( —r*)} —%rfn T E\/gerf<\/27>

on-e]

12(1) = 2\/%;{(2 +§‘Cm)M101(T) —(1+ rm)(l +§rm)

-1 { Vrerf (V) — \/W(E+§f*+r*2)

—\/r_*<%+

X Mooy (t) — Mooy (t) + Moy (1) — (2 + %rm)

X M (t) + (1 4 2tm) (1 + %rm)MOH ()

3
Tm (1 + Efm)MOZI (T):| )

V(6) = tmv/ 2t [(1 + Tw)Mooa (t) — Mioa(t) + Mina(7)
— (1 4+ 27)Mo12(1) + tmMoa (7))

+ M2 (1) —

and

Mooi (T) = T L\/T_* - F(\/T_*)J,

My (1) = 2, {\/r_w%r*x/r_* —(1+ t*)F(\/T_*)}
Mo (v) = T, {2\/?%1*\/?%12*\/?
— (242" + r*z)F(\/F)} :
Mo (z) = % erfy/ - exp(—r*)F(\/T_*ﬂ,
M (7) = % erf\/‘c_*—%\/r_*exp(—r*)
AN p—
My (1) = % :gerf\/r_*—%\/r_*(§+ r*) exp(— 1)
2 exp(—7)F(VF)
- 3+ ) et (v,
Mo (7) = %‘“ B \/gerf(\/ﬁ) - exp(fZT*)F(\/F)} ,
M (z) = % B \/gerf(\/i?) - %\/T_*exp(—h*)

(b))

=
Mo (1) = T _\/g — %F(@)] ,

Mo (€) = 1 {‘/j erf (v2r') - % exkar*)F(\/Z?)}
(18)
as well as

my = mofVopotl, mj = my fVopoll. (19)

5. Numerical analysis

The calculations were performed according to the
following scheme:
1. The dimensionless time 7., of increasing loading from
zero to the maximal value py is given.
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2. From Eq. (9) the dimensionless braking time t; is de-
termined.
3. By using Eq. (15) the temperature 7(-) is obtained
and by using (17)-(19), the wear /(¢) is calculated.
It is shown from these relations that the influence of
thermo-physical and geometrical parameters of the
composite on the temperature and wear is determined
the factor A" (see Eq. (14)). The coefficient k,, which
defined parameter A*, characterizes thermal activity of
the composite body with respect to the homogeneous
half-space [10]. Bearing in mind Eq. (10), the coefficient
k, can be expressed in the form

e e [€7)E(c)

b= kg ()| [FOES (20)
where
_K

K* - b p =
K 12 c

)] =x— 1.

Thus, the input parameters for calculation of A are
K*,p*, ¢*, nand k.

It can be observed that an increasing of the con-
ductivity ratio K* leads to a decreasing of A™ (Fig. 2). If
the thickness %; of one of the composite components
increases then the ratio A" decreases for K* < 1 and
grows for K* > 1 (Fig. 3). For ¢* < 1 an increasing of
the parameter n leads to a decreasing of A™ but for
¢* > 1 it leads to an increasing of A" (Fig. 4).

The dimensionless temperature 7*(-) achieves maxi-
mal values for braking with a constant pressure during
braking (Fig. 5). The distribution of 7*(-) is character-
ized by a considerable variability. The function 7*(-)
increases fast at initial times to the maximal values and
decreases with 1 — .

The dimensionless function /,(¢) given in (17) char-
acterizes the abrasive wear of working surface due to
mechanical load, (7). The function [y(¢) archives its
maximal values at the stopping moment (Fig. 6). The
most intensive wear is observed during braking with a
constant pressure. The wear is independent on the
parameter t,, at the stopping moment.

The dimensionless function /,(¢) given in (18) char-
acterizes the influence of the contact temperature and it
monotone increases, see Fig. 7. However its maximal

log K"

Fig. 2. Dependence of the dimensionless factor A" on the ratio
K*at k} =1; p* =1; ¢ =1 for different values of the dimen-
sionless thickness 7.

0.80

0.65 \

0.50 /
2
0.35 10
0.20 T T T -
0.0 0.2 0.4 0.8 0.8 1.0

n

Fig. 3. Dependence of the dimensionless factor A* on the di-
mensionless thickness n at kf = 1; p* =1; ¢* =1 for different
values of the ratio K*.

value is reached at the stopping moment for ¢ = ¢, and it
is dependent on the parameter t,,. For the fixed time of
braking, the function /, (¢) takes the minimal value in the
case of constant pressure.

The ratio A is linearly represented in the relations
for temperature (see, Eq. (15)) and for wear (see, Eq.
(17)), so the dependence of temperature and wear on
the effective properties of composite is determined by
A"
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0.80

*

0.65 o

1 \
0.50 VA

0.35

Fig. 4. Dependence of the dimensionless factor A" on the di-
mensionless thickness n at k; = 1; p* = 1; K* =1 for different
values of the ratio ¢*.

0.0 7 7 T T T
0.0 0.2 .4 0.8 0.8 1.0

t/ts

Fig. 5. Distribution of the dimensionless contact temperature
T* = T/(AyA") during braking for different values of the di-
mensionless parameter Ty.

6. Conclusions

It has been established that:

1. The increasing of content of the composite compo-
nent with a greater coefficient of thermal conductivity
(K; > Kp) in the fundamental lamina leads to a de-
creasing of the contact temperature. On the contrary,

0.5
Iy

0.4

0.3

0.2 o
0,1

0,2

0.0 T ¥ ¥ T
0.0 0.2 0.4 0.6 0.8 1.0

U/t

Fig. 6. Distribution of the dimensionless function /, during
braking for different values of the dimensionless parameter t,.

Fig. 7. Distribution of the dimensionless function /; during
braking for different values of the dimensionless parameter ty,.

the temperature on the frictional surface during
braking will be the highest for greater content of
thermoinsulator (the material with small coefficient
of thermal conductivity).

2. The increasing of thickness of the composite compo-
nent with great coefficient of specific heat (¢; > ¢,)
leads also to a decreasing of the contact temperature.
Thus, the temperature in the contact region during
braking will be decreased, when in the composite
half-space contents more material with greater coef-
ficients of thermal conductivity and specific heat.
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3. For the considered scheme of loading the wear
reached the maximal value at the stop time #,. The
thermal part of the wear denoted by I; is considerably
dependent on the time ¢, of the duration of the action
of loading from zero to the maximal value and the
mechanical part of the wear denoted by I is not de-
pendent on the time #,.
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